IC Phoenix
 
Home ›  7710 > 74AUP1G17GW,Low-power Schmitt trigger
74AUP1G17GW Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74AUP1G17GWNXPN/a6000avaiLow-power Schmitt trigger


74AUP1G17GW ,Low-power Schmitt triggerFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity ESD prot ..
74AUP1G18GF ,Low-power 1-of-2 demultiplexer with 3-state deselected outputFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G18GW ,Low-power 1-of-2 demultiplexer with 3-state deselected outputGeneral descriptionThe 74AUP1G18 provides a 1-of-2 non-inverting demultiplexer with 3-state output. ..
74AUP1G32GF ,Low-power 2-input OR-gateGeneral descriptionThe 74AUP1G32 provides the single 2-input OR function.Schmitt-trigger action at ..
74AUP1G32GW ,Low-power 2-input OR-gateFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G332GW ,Low-power 3-input OR-gateFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74HC595N. ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateAPPLICATIONS storage register.• Serial-to-parallel data conversionThe shift register has a serial i ..
74HC595PW ,8-bit serial-in, serial or parallel-out shift register with output latches; 3-stateFEATURES DESCRIPTION• 8-bit serial input The 74HC/HCT595 are high-speed Si-gate CMOS devicesand are ..
74HC597 ,8-bit shift register with input flip-flops
74HC597 ,8-bit shift register with input flip-flops
74HC597D ,8-bit shift register with input flip-flopsINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC597N ,74HC/HCT597; 8-bit shift register with input flip-flopsGeneral descriptionThe 74HC597; 74HCT597 is an 8-bit shift register with input flip-flops. It consi ..


74AUP1G17GW
Low-power Schmitt trigger
1. General description
The 74AUP1G17 provides the single Schmitt trigger buffer. It is capable of transforming
slowly changing input signals into sharply defined, jitter-free output signals.
This device ensures a very low static and dynamic power consumption across the entire
VCC range from 0.8 V to 3.6 V.
This device is fully specified for partial Power-down applications using IOFF.
The IOFF circuitry disables the output, preventing the damaging backflow current through
the device when it is powered down.
The inputs switch at different points for positive and negative-going signals. The difference
between the positive voltage VT+ and the negative voltage VT is defined as the input
hysteresis voltage VH.
2. Features and benefits
Wide supply voltage range from 0.8 Vto 3.6V High noise immunity ESD protection: HBM JESD22-A114F Class 3A exceeds 5000V MM JESD22-A115-A exceeds 200V CDM JESD22-C101E exceeds 1000V Low static power consumption; ICC = 0.9 A (maximum) Latch-up performance exceeds 100 mA per JESD 78 Class II Inputs accept voltages up to 3.6V Low noise overshoot and undershoot < 10 % of VCC IOFF circuitry provides partial Power-down mode operation Multiple package options Specified from 40 Cto+85 C and 40 Cto+125C
74AUP1G17
Low-power Schmitt trigger
Rev. 7 — 16 July 2012 Product data sheet
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
3. Ordering information

4. Marking

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram

Table 1. Ordering information

74AUP1G17GW 40 C to +125 C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74AUP1G17GM 40 C to +125 C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1 1.45 0.5 mm
SOT886
74AUP1G17GF 40 C to +125 C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 11 0.5 mm
SOT891
74AUP1G17GN 40 C to +125C XSON6 extremely thin small outline package; no leads; terminals; body 0.9 1.0 0.35 mm
SOT1115
74AUP1G17GS 40 C to +125C XSON6 extremely thin small outline package; no leads; terminals; body 1.0 1.0 0.35 mm
SOT1202
74AUP1G17GX 40 C to +125C X2SON5 X2SON5: plastic thermal enhanced extremely thin
small outline package; no leads; 5 terminals;
body 0.8 0.8 0.35 mm
SOT1226
Table 2. Marking

74AUP1G17GW pJ
74AUP1G17GM pJ
74AUP1G17GF pJ
74AUP1G17GN pJ
74AUP1G17GS pJ
74AUP1G17GS pJ
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
6. Pinning information
6.1 Pinning

6.2 Pin description

Table 3. Pin description

n.c. 1 1 not connected 2 2 data input
GND 3 3 ground (0V) 4 4 data output
n.c. - 5 not connected
VCC 5 6 supply voltage
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
7. Functional description

[1] H= HIGH voltage level; L= LOW voltage level.
8. Limiting values

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For TSSOP5 packages: above 87.5 C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 and X2SON5 packages: above 118 C the value of Ptot derates linearly with 7.8 mW/K.
9. Recommended operating conditions

Table 4. Function table[1]

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 0.5 +4.6 V
IIK input clamping current VI <0V 50 - mA input voltage [1] 0.5 +4.6 V
IOK output clamping current VO <0V 50 - mA output voltage Active mode and Power-down mode [1] 0.5 +4.6 V output current VO =0 VtoVCC - 20 mA
ICC supply current - +50 mA
IGND ground current 50 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation Tamb= 40 C to +125C [2] -250 mW
Table 6. Recommended operating conditions

VCC supply voltage 0.8 3.6 V input voltage 0 3.6 V output voltage Active mode 0 VCC V
Power-down mode; VCC =0V 0 3.6 V
Tamb ambient temperature 40 +125 C
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
10. Static characteristics
Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb = 25 C

VOH HIGH-level output voltage VI = VT+ or VT
IO = 20 A; VCC = 0.8 V to 3.6 V VCC  0.1 - - V
IO = 1.1 mA; VCC = 1.1 V 0.75  VCC -- V
IO = 1.7 mA; VCC = 1.4 V 1.11 - - V
IO = 1.9 mA; VCC = 1.65 V 1.32 - - V
IO = 2.3 mA; VCC = 2.3 V 2.05 - - V
IO = 3.1 mA; VCC = 2.3 V 1.9 - - V
IO = 2.7 mA; VCC = 3.0 V 2.72 - - V
IO = 4.0 mA; VCC = 3.0 V 2.6 - - V
VOL LOW-level output voltage VI = VT+ or VT
IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3  VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.31 V
IO = 1.9 mA; VCC = 1.65 V - - 0.31 V
IO = 2.3 mA; VCC = 2.3 V - - 0.31 V
IO = 3.1 mA; VCC = 2.3 V - - 0.44 V
IO = 2.7 mA; VCC = 3.0 V - - 0.31 V
IO = 4.0 mA; VCC = 3.0 V - - 0.44 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.1 A
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.2 A
IOFF additional power-off leakage
current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V 0.2 A
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8 V to 3.6 V 0.5 A
ICC additional supply current VI = VCC  0.6 V; IO = 0A;
VCC =3.3V 40 A input capacitance VI = GND or VCC; VCC = 0 V to 3.6 V - 1.1 - pF output capacitance VO = GND; VCC = 0 V - 1.7 - pF
Tamb = 40 C to +85
C
VOH HIGH-level output voltage VI = VT+ or VT
IO = 20 A; VCC = 0.8 V to 3.6 V VCC  0.1 - - V
IO = 1.1 mA; VCC = 1.1 V 0.7  VCC -- V
IO = 1.7 mA; VCC = 1.4 V 1.03 - - V
IO = 1.9 mA; VCC = 1.65 V 1.30 - - V
IO = 2.3 mA; VCC = 2.3 V 1.97 - - V
IO = 3.1 mA; VCC = 2.3 V 1.85 - - V
IO = 2.7 mA; VCC = 3.0 V 2.67 - - V
IO = 4.0 mA; VCC = 3.0 V 2.55 - - V
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger

VOL LOW-level output voltage VI = VT+ or VT
IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3  VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.37 V
IO = 1.9 mA; VCC = 1.65 V - - 0.35 V
IO = 2.3 mA; VCC = 2.3 V - - 0.33 V
IO = 3.1 mA; VCC = 2.3 V - - 0.45 V
IO = 2.7 mA; VCC = 3.0 V - - 0.33 V
IO = 4.0 mA; VCC = 3.0 V - - 0.45 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.5 A
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.5 A
IOFF additional power-off leakage
current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V 0.6 A
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8 V to 3.6 V 0.9 A
ICC additional supply current VI = VCC  0.6 V; IO = 0A;
VCC =3.3V 50 A
Tamb = 40 C to +125
C
VOH HIGH-level output voltage VI = VT+ or VT
IO = 20 A; VCC = 0.8 V to 3.6 V VCC  0.11- - V
IO = 1.1 mA; VCC = 1.1 V 0.6  VCC -- V
IO = 1.7 mA; VCC = 1.4 V 0.93 - - V
IO = 1.9 mA; VCC = 1.65 V 1.17 - - V
IO = 2.3 mA; VCC = 2.3 V 1.77 - - V
IO = 3.1 mA; VCC = 2.3 V 1.67 - - V
IO = 2.7 mA; VCC = 3.0 V 2.40 - - V
IO = 4.0 mA; VCC = 3.0 V 2.30 - - V
VOL LOW-level output voltage VI = VT+ or VT
IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.11 V
IO = 1.1 mA; VCC = 1.1 V - - 0.33  VCCV
IO = 1.7 mA; VCC = 1.4 V - - 0.41 V
IO = 1.9 mA; VCC = 1.65 V - - 0.39 V
IO = 2.3 mA; VCC = 2.3 V - - 0.36 V
IO = 3.1 mA; VCC = 2.3 V - - 0.50 V
IO = 2.7 mA; VCC = 3.0 V - - 0.36 V
IO = 4.0 mA; VCC = 3.0 V - - 0.50 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.75 A
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.75 A
Table 7. Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
11. Dynamic characteristics

IOFF additional power-off leakage
current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V 0.75 A
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8 V to 3.6 V 1.4 A
ICC additional supply current VI = VCC  0.6 V; IO = 0A;
VCC =3.3V 75 A
Table 7. Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Table 8. Dynamic characteristics

Voltages are referenced to GND (ground=0 V); for test circuit see Figure9
CL = 5 pF

tpd propagation delay A to Y; see Figure8 [2]
VCC = 0.8 V - 19.0 - - - - ns
VCC = 1.1 V to 1.3 V 2.6 5.7 10.6 2.5 10.9 11.1 ns
VCC = 1.4 V to 1.6 V 2.4 4.2 6.5 2.3 7.1 7.4 ns
VCC = 1.65 V to 1.95 V 2.0 3.6 5.5 1.9 6.1 6.3 ns
VCC = 2.3 V to 2.7 V 1.9 3.0 4.2 1.8 4.6 4.8 ns
VCC = 3.0 V to 3.6 V 1.8 2.7 3.6 1.5 3.8 4.0 ns
CL = 10 pF

tpd propagation delay A to Y; see Figure8 [2]
VCC = 0.8 V - 22.5 - - - - ns
VCC = 1.1 V to 1.3 V 2.9 6.6 12.4 2.7 12.9 13.0 ns
VCC = 1.4 V to 1.6 V 2.6 4.8 7.8 2.4 8.3 8.7 ns
VCC = 1.65 V to 1.95 V 2.5 4.2 6.3 2.4 6.8 7.1 ns
VCC = 2.3 V to 2.7 V 2.3 3.5 4.8 2.1 5.3 5.6 ns
VCC = 3.0 V to 3.6 V 2.1 3.3 4.4 2.0 4.6 4.8 ns
CL = 15 pF

tpd propagation delay A to Y; see Figure8 [2]
VCC = 0.8 V - 26.0 - - - - ns
VCC = 1.1 V to 1.3 V 3.2 7.4 14.1 3.1 14.7 14.9 ns
VCC = 1.4 V to 1.6 V 3.1 5.4 8.7 2.8 9.5 9.9 ns
VCC = 1.65 V to 1.95 V 2.7 4.7 7.1 2.7 7.8 8.2 ns
VCC = 2.3 V to 2.7 V 2.6 4.0 5.6 2.5 6.0 6.3 ns
VCC = 3.0 V to 3.6 V 2.5 3.7 4.9 2.2 5.2 5.5 ns
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger

[1] All typical values are measured at nominal VCC.
[2] tpd is the same as tPLH and tPHL
[3] CPD is used to determine the dynamic power dissipation (PD in W). =CPD VCC2fi N+ (CL VCC2 fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
(CL VCC2fo)= sum of the outputs.
CL = 30 pF

tpd propagation delay A to Y; see Figure8 [2]
VCC = 0.8 V - 36.3 - - - - ns
VCC = 1.1 V to 1.3 V 3.9 9.7 19.0 3.7 19.8 20.1 ns
VCC = 1.4 V to 1.6 V 3.5 7.0 11.2 3.6 12.4 13.0 ns
VCC = 1.65 V to 1.95 V 3.5 6.0 9.2 3.4 10.1 10.7 ns
VCC = 2.3 V to 2.7 V 3.4 5.1 7.0 3.2 7.5 7.9 ns
VCC = 3.0 V to 3.6 V 3.3 4.8 6.2 3.1 7.1 7.5 ns
CL = 5 pF, 10 pF, 15 pF and 30 pF

CPD power dissipation
capacitance
f = 1 MHz; VI= GND to VCC [3]
VCC = 0.8 V - 2.5 - - - - pF
VCC = 1.1 V to 1.3 V - 2.7 - - - - pF
VCC = 1.4 V to 1.6 V - 2.8 - - - - pF
VCC = 1.65 V to 1.95 V - 3.0 - - - - pF
VCC = 2.3 V to 2.7 V - 3.5 - - - - pF
VCC = 3.0 V to 3.6 V - 4.0 - - - - pF
Table 8. Dynamic characteristics …continued

Voltages are referenced to GND (ground=0 V); for test circuit see Figure9
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
12. Waveforms

[1] For measuring enable and disable times, RL = 5 k, for measuring propagation delays, setup and hold times and pulse width =1M.
Table 9. Measurement points

0.8 V to 3.6 V 0.5  VCC 0.5  VCC VCC  3.0 ns
Table 10. Test data

0.8 V to 3.6 V 5 pF, 10 pF, 15 pF and 30 pF 5 k or 1 M open GND 2  VCC
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
13. Transfer characteristics
Table 11. Transfer characteristics
Voltages are referenced to GND (ground = 0 V).
Tamb = 25 C

VT+ positive-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.30 - 0.60 V
VCC = 1.1 V 0.53 - 0.90 V
VCC = 1.4 V 0.74 - 1.11 V
VCC = 1.65 V 0.91 - 1.29 V
VCC = 2.3 V 1.37 - 1.77 V
VCC = 3.0 V 1.88 - 2.29 V
VT negative-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.10 - 0.60 V
VCC = 1.1 V 0.26 - 0.65 V
VCC = 1.4 V 0.39 - 0.75 V
VCC = 1.65 V 0.47 - 0.84 V
VCC = 2.3 V 0.69 - 1.04 V
VCC = 3.0 V 0.88 - 1.24 V hysteresis voltage see Figure 10, Figure 11,
Figure 12 and Figure13
VCC = 0.8 V 0.07 - 0.50 V
VCC = 1.1 V 0.08 - 0.46 V
VCC = 1.4 V 0.18 - 0.56 V
VCC = 1.65 V 0.27 - 0.66 V
VCC = 2.3 V 0.53 - 0.92 V
VCC = 3.0 V 0.79 - 1.31 V
Tamb = 40 C to +85
C
VT+ positive-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.30 - 0.60 V
VCC = 1.1 V 0.53 - 0.90 V
VCC = 1.4 V 0.74 - 1.11 V
VCC = 1.65 V 0.91 - 1.29 V
VCC = 2.3 V 1.37 - 1.77 V
VCC = 3.0 V 1.88 - 2.29 V
VT negative-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.10 - 0.60 V
VCC = 1.1 V 0.26 - 0.65 V
VCC = 1.4 V 0.39 - 0.75 V
VCC = 1.65 V 0.47 - 0.84 V
VCC = 2.3 V 0.69 - 1.04 V
VCC = 3.0 V 0.88 - 1.24 V
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
hysteresis voltage see Figure 10, Figure 11,
Figure 12 and Figure13
VCC = 0.8 V 0.07 - 0.50 V
VCC = 1.1 V 0.08 - 0.46 V
VCC = 1.4 V 0.18 - 0.56 V
VCC = 1.65 V 0.27 - 0.66 V
VCC = 2.3 V 0.53 - 0.92 V
VCC = 3.0 V 0.79 - 1.31 V
Tamb = 40 C to +125
C
VT+ positive-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.30 - 0.62 V
VCC = 1.1 V 0.53 - 0.92 V
VCC = 1.4 V 0.74 - 1.13 V
VCC = 1.65 V 0.91 - 1.31 V
VCC = 2.3 V 1.37 - 1.80 V
VCC = 3.0 V 1.88 - 2.32 V
VT negative-going
threshold voltage
see Figure 10 and Figure11
VCC = 0.8 V 0.10 - 0.60 V
VCC = 1.1 V 0.26 - 0.65 V
VCC = 1.4 V 0.39 - 0.75 V
VCC = 1.65 V 0.47 - 0.84 V
VCC = 2.3 V 0.69 - 1.04 V
VCC = 3.0 V 0.88 - 1.24 V hysteresis voltage see Figure 10, Figure 11,
Figure 12 and Figure13
VCC = 0.8 V 0.07 - 0.50 V
VCC = 1.1 V 0.08 - 0.46 V
VCC = 1.4 V 0.18 - 0.56 V
VCC = 1.65 V 0.27 - 0.66 V
VCC = 2.3 V 0.53 - 0.92 V
VCC = 3.0 V 0.79 - 1.31 V
Table 11. Transfer characteristics …continued

Voltages are referenced to GND (ground = 0 V).
NXP Semiconductors 74AUP1G17
Low-power Schmitt trigger
14. Waveforms transfer characteristics

ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED