74AUP1G34GW ,Low-power bufferLogic diagram74AUP1G34 All information provided in this document is subject to legal disclaimers. ..
74AUP1G373GF ,Low-power D-type transparent latch; 3-stateGeneral descriptionThe 74AUP1G373 provides the single D-type transparent latch with 3-state output. ..
74AUP1G373GW ,Low-power D-type transparent latch; 3-stateFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G38GW ,Low-power 2-input NAND-gate (open drain)Features and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G57GM ,Low-power configurable multiple function gateapplications using I . The I OFF OFFcircuitry disables the output, preventing the damaging backflow ..
74AUP1G57GM ,Low-power configurable multiple function gateFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity ESD prot ..
74HC597 ,8-bit shift register with input flip-flops
74HC597 ,8-bit shift register with input flip-flops
74HC597D ,8-bit shift register with input flip-flopsINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC597N ,74HC/HCT597; 8-bit shift register with input flip-flopsGeneral descriptionThe 74HC597; 74HCT597 is an 8-bit shift register with input flip-flops. It consi ..
74HC597PW ,8-bit shift register with input flip-flops 74HC597; 74HCT5978-bit shift register with input flip-flopsRev. 3 — 15 April 2014 Product data she ..
74HC6323AD ,Programmable ripple counter with oscillator; 3-stateGENERAL DESCRIPTION1. C is used to determine the dynamic power dissipation (P in μW):PD D2 2The HC/ ..
74AUP1G34GM-74AUP1G34GW
Low-power buffer
1. General descriptionThe 74AUP1G34 provides a low-power, low-voltage single buffer.
Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall
times across the entire VCC range from 0.8 V to 3.6 V.
This device ensures a very low static and dynamic power consumption across the entire
VCC range from 0.8 V to 3.6 V.
This device is fully specified for partial power-down applications using IOFF.
The IOFF circuitry disables the output, preventing the damaging backflow current through
the device when it is powered down.
2. Features and benefits Wide supply voltage range from 0.8 Vto 3.6V High noise immunity Complies with JEDEC standards: JESD8-12 (0.8 Vto 1.3 V) JESD8-11 (0.9 Vto 1.65V) JESD8-7 (1.2 Vto 1.95V) JESD8-5 (1.8 Vto 2.7V) JESD8-B (2.7 Vto 3.6V) ESD protection: HBM JESD22-A114F Class 3A exceeds 5000V MM JESD22-A115-A exceeds 200V CDM JESD22-C101E exceeds 1000V Low static power consumption; ICC = 0.9 μA (maximum) Latch-up performance exceeds 100 mA per JESD 78 Class II Inputs accept voltages up to 3.6V Low noise overshoot and undershoot < 10 % of VCC IOFF circuitry provides partial power-down mode operation Multiple package options Specified from −40 °Cto+85 °C and −40 °Cto+125°C
74AUP1G34
Low-power buffer
Rev. 6 — 28 June 2012 Product data sheet
NXP Semiconductors 74AUP1G34
Low-power buffer
3. Ordering information
4. Marking[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram
Table 1. Ordering information74AUP1G34GW −40 °C to +125 °C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74AUP1G34GM −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1× 1.45× 0.5 mm
SOT886
74AUP1G34GF −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1×1× 0.5 mm
SOT891
74AUP1G34GN −40 °C to +125°C XSON6 extremely thin small outline package; no leads; terminals; body 0.9× 1.0× 0.35 mm
SOT1115
74AUP1G34GS −40 °C to +125°C XSON6 extremely thin small outline package; no leads; terminals; body 1.0× 1.0× 0.35 mm
SOT1202
74AUP1G34GX −40 °C to +125°C X2SON5 X2SON5: plastic thermal enhanced extremely thin
small outline package; no leads; 5 terminals;
body 0.8× 0.8× 0.35 mm
SOT1226
Table 2. Marking74AUP1G34GW aN
74AUP1G34GM aN
74AUP1G34GF aN
74AUP1G34GN aN
74AUP1G34GS aN
74AUP1G34GX aN
NXP Semiconductors 74AUP1G34
Low-power buffer
6. Pinning information
6.1 Pinning
6.2 Pin description
Table 3. Pin descriptionn.c. 1 1 not connected 2 2 data input
GND 3 3 ground (0V) 4 4 data output
n.c. - 5 not connected
VCC 5 6 supply voltage
NXP Semiconductors 74AUP1G34
Low-power buffer
7. Functional description[1] H= HIGH voltage level;= LOW voltage level.
8. Limiting values[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For TSSOP5 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 and X2SON5 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.
9. Recommended operating conditions
Table 4. Function table[1]
Table 5. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage −0.5 +4.6 V
IIK input clamping current VI <0V −50 - mA input voltage [1] −0.5 +4.6 V
IOK output clamping current VO <0V −50 - mA output voltage Active mode and Power-down mode [1] −0.5 +4.6 V output current VO =0 VtoVCC - ±20 mA
ICC supply current - +50 mA
IGND ground current −50 - mA
Tstg storage temperature −65 +150 °C
Ptot total power dissipation Tamb= −40 °C to +125°C [2] -250 mW
Table 6. Recommended operating conditionsVCC supply voltage 0.8 3.6 V input voltage 0 3.6 V output voltage Active mode 0 VCC V
Power-down mode; VCC =0V 0 3.6 V
Tamb ambient temperature −40 +125 °C
Δt/ΔV input transition rise and fall rate VCC= 0.8 V to 3.6V 0 200 ns/V
NXP Semiconductors 74AUP1G34
Low-power buffer
10. Static characteristicsTable 7. Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb = 25 °CVIH HIGH-level input voltage VCC = 0.8 V 0.70 × VCC -- V
VCC = 0.9 V to 1.95 V 0.65 × VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.30 × VCCV
VCC = 0.9 V to 1.95 V - - 0.35 × VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.1- - V
IO = −1.1 mA; VCC = 1.1 V 0.75 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 1.11 - - V
IO = −1.9 mA; VCC = 1.65 V 1.32 - - V
IO = −2.3 mA; VCC = 2.3 V 2.05 - - V
IO = −3.1 mA; VCC = 2.3 V 1.9 - - V
IO = −2.7 mA; VCC = 3.0 V 2.72 - - V
IO = −4.0 mA; VCC = 3.0 V 2.6 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.31 V
IO = 1.9 mA; VCC = 1.65 V - - 0.31 V
IO = 2.3 mA; VCC = 2.3 V - - 0.31 V
IO = 3.1 mA; VCC = 2.3 V - - 0.44 V
IO = 2.7 mA; VCC = 3.0 V - - 0.31 V
IO = 4.0 mA; VCC = 3.0 V - - 0.44 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.1 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.2 μA
ΔIOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.2 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 0.5 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V
[1] -- 40 μA input capacitance VCC = 0 V to 3.6 V; VI = GND or VCC -0.8 -pF output capacitance VO = GND; VCC = 0 V - 1.7 - pF
NXP Semiconductors 74AUP1G34
Low-power buffer
Tamb = −40 °C to +85°C
VIH HIGH-level input voltage VCC = 0.8 V 0.70 × VCC -- V
VCC = 0.9 V to 1.95 V 0.65 × VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.30 × VCCV
VCC = 0.9 V to 1.95 V - - 0.35 × VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.1- - V
IO = −1.1 mA; VCC = 1.1 V 0.7 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 1.03 - - V
IO = −1.9 mA; VCC = 1.65 V 1.30 - - V
IO = −2.3 mA; VCC = 2.3 V 1.97 - - V
IO = −3.1 mA; VCC = 2.3 V 1.85 - - V
IO = −2.7 mA; VCC = 3.0 V 2.67 - - V
IO = −4.0 mA; VCC = 3.0 V 2.55 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.37 V
IO = 1.9 mA; VCC = 1.65 V - - 0.35 V
IO = 2.3 mA; VCC = 2.3 V - - 0.33 V
IO = 3.1 mA; VCC = 2.3 V - - 0.45 V
IO = 2.7 mA; VCC = 3.0 V - - 0.33 V
IO = 4.0 mA; VCC = 3.0 V - - 0.45 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.5 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.5 μA
ΔIOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.6 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 0.9 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V
[1] -- 50 μA
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1G34
Low-power buffer[1] One input at VCC − 0.6 V, other input at VCC or GND.
Tamb = −40 °C to +125°C
VIH HIGH-level input voltage VCC = 0.8 V 0.75 × VCC -- V
VCC = 0.9 V to 1.95 V 0.70 × VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.25 × VCCV
VCC = 0.9 V to 1.95 V - - 0.30 × VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = −20 μA; VCC = 0.8 V to 3.6 V VCC − 0.11- - V
IO = −1.1 mA; VCC = 1.1 V 0.6 × VCC -- V
IO = −1.7 mA; VCC = 1.4 V 0.93 - - V
IO = −1.9 mA; VCC = 1.65 V 1.17 - - V
IO = −2.3 mA; VCC = 2.3 V 1.77 - - V
IO = −3.1 mA; VCC = 2.3 V 1.67 - - V
IO = −2.7 mA; VCC = 3.0 V 2.40 - - V
IO = −4.0 mA; VCC = 3.0 V 2.30 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 μA; VCC = 0.8 V to 3.6 V - - 0.11 V
IO = 1.1 mA; VCC = 1.1 V - - 0.33 × VCCV
IO = 1.7 mA; VCC = 1.4 V - - 0.41 V
IO = 1.9 mA; VCC = 1.65 V - - 0.39 V
IO = 2.3 mA; VCC = 2.3 V - - 0.36 V
IO = 3.1 mA; VCC = 2.3 V - - 0.50 V
IO = 2.7 mA; VCC = 3.0 V - - 0.36 V
IO = 4.0 mA; VCC = 3.0 V - - 0.50 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.75 μA
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.75 μA
ΔIOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC =0Vto0.2V ±0.75 μA
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8Vto 3.6V 1.4 μA
ΔICC additional supply current VI = VCC − 0.6 V; IO = 0A;
VCC =3.3V
[1] -- 75 μA
Table 7. Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1G34
Low-power buffer
11. Dynamic characteristicsTable 8. Dynamic characteristicsVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
CL = 5pFtpd propagation
delay
A to Y; see Figure8 [2]
VCC = 0.8V - 15.0 - - - - - ns
VCC = 1.1 V to 1.3V 2.6 4.7 9.2 2.0 10.0 2.0 11.0 ns
VCC = 1.4 V to 1.6V 2.1 3.4 5.7 1.6 6.5 1.6 7.2 ns
VCC = 1.65 V to 1.95V 1.8 2.9 4.5 1.4 5.2 1.4 5.8 ns
VCC = 2.3 V to 2.7V 1.5 2.3 3.5 1.2 4.2 1.2 4.6 ns
VCC = 3.0 V to 3.6V 1.4 2.1 3.2 1.0 3.8 1.0 4.2 ns
CL = 10pFtpd propagation
delay
A to Y; see Figure8 [2]
VCC = 0.8V - 18.4 - - - - - ns
VCC = 1.1 V to 1.3V 3.2 5.6 10.9 2.3 11.8 2.3 13.1 ns
VCC = 1.4 V to 1.6V 2.6 4.1 6.7 1.9 7.7 1.9 8.5 ns
VCC = 1.65 V to 1.95V 2.3 3.4 5.3 1.7 6.2 1.7 6.9 ns
VCC = 2.3 V to 2.7V 2.0 2.9 4.2 1.5 5.0 1.5 5.5 ns
VCC = 3.0 V to 3.6V 1.7 2.6 3.8 1.4 4.6 1.4 5.1 ns
CL = 15pFtpd propagation
delay
A to Y; see Figure8 [2]
VCC = 0.8V - 21.9 - - - - - ns
VCC = 1.1 V to 1.3V 3.6 6.4 12.6 2.6 13.8 2.6 15.2 ns
VCC = 1.4 V to 1.6V 3.0 4.6 7.6 2.2 8.9 2.2 9.8 ns
VCC = 1.65 V to 1.95V 2.6 3.9 6.0 2.0 7.2 2.0 7.9 ns
VCC = 2.3 V to 2.7V 2.3 3.3 4.8 1.8 5.7 1.8 6.3 ns
VCC = 3.0 V to 3.6V 2.1 3.1 4.2 1.6 5.0 1.6 5.5 ns
CL = 30pFtpd propagation
delay
A to Y; see Figure8 [2]
VCC = 0.8V - 32.1 - - - - - ns
VCC = 1.1 V to 1.3V 4.8 8.7 16.3 3.6 18.9 3.6 20.8 ns
VCC = 1.4 V to 1.6V 4.0 6.2 10.3 3.4 12.2 3.4 13.4 ns
VCC = 1.65 V to 1.95V 3.6 5.2 8.1 3.2 9.8 3.2 10.8 ns
VCC = 2.3 V to 2.7V 3.0 4.4 6.4 2.7 7.7 2.7 8.5 ns
VCC = 3.0 V to 3.6V 2.9 4.2 5.6 2.5 6.5 2.5 7.2 ns
NXP Semiconductors 74AUP1G34
Low-power buffer[1] All typical values are measured at nominal VCC.
[2] tpd is the same as tPLH and tPHL.
[3] CPD is used to determine the dynamic power dissipation (PD in μW). =CPD× VCC2×fi×N+ Σ(CL× VCC2× fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
Σ(CL× VCC2×fo)= sum of outputs.
12. WaveformsCPD power
dissipation
capacitance
fi = 1 MHz; =GNDto VCC
[3]
VCC = 0.8V - 2.5 - - - - - pF
VCC = 1.1 V to 1.3V - 2.6 - - - - - pF
VCC = 1.4 V to 1.6V - 2.7 - - - - - pF
VCC = 1.65 V to 1.95V - 2.9 - - - - - pF
VCC = 2.3 V to 2.7V - 3.4 - - - - - pF
VCC = 3.0 V to 3.6V - 4.0 - - - - - pF
Table 8. Dynamic characteristics …continuedVoltages are referenced to GND (ground=0 V); for test circuit see Figure9.
Table 9. Measurement points0.8 V to 3.6 V 0.5 × VCC 0.5 × VCC VCC ≤ 3.0 ns
NXP Semiconductors 74AUP1G34
Low-power buffer[1] For measuring enable and disable times RL = 5 kΩ, for measuring propagation delays, setup and hold times and pulse width RL = 1 MΩ.
Table 10. Test data0.8 V to 3.6 V 5 pF, 10 pF, 15 pF and 30 pF 5 kΩ or 1 MΩ open GND 2 × VCC