IC Phoenix
 
Home ›  7710 > 74AUP1G79GM-74AUP1G79GW,Low-power D-type flip-flop; positive-edge trigger
74AUP1G79GM-74AUP1G79GW Fast Delivery,Good Price
Part Number:
If you need More Quantity or Better Price,Welcom Any inquiry.
We available via phone +865332716050 Email
Partno Mfg Dc Qty AvailableDescript
74AUP1G79GMNXPN/a20000avaiLow-power D-type flip-flop; positive-edge trigger
74AUP1G79GWNXPN/a39000avaiLow-power D-type flip-flop; positive-edge trigger


74AUP1G79GW ,Low-power D-type flip-flop; positive-edge triggerFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G86GF ,Low-power 2-input EXCLUSIVE-OR gateGeneral descriptionThe 74AUP1G86 provides the single 2-input EXCLUSIVE-OR function.Schmitt-trigger ..
74AUP1G86GW ,Low-power 2-input EXCLUSIVE-OR gateFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1G885GM ,Low-power dual function gateFeatures and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies ..
74AUP1T34GF ,Low-power dual supply translating bufferFeatures and benefits Wide supply voltage range from 1.1 V to 3.6 V High noise immunity Complies ..
74AUP2G125GM ,Low-power dual buffer/line driver; 3-state
74HC597D ,8-bit shift register with input flip-flopsINTEGRATED CIRCUITSDATA SHEETFor a complete data sheet, please also download:• The IC06 74HC/HCT/HC ..
74HC597N ,74HC/HCT597; 8-bit shift register with input flip-flopsGeneral descriptionThe 74HC597; 74HCT597 is an 8-bit shift register with input flip-flops. It consi ..
74HC597PW ,8-bit shift register with input flip-flops 74HC597; 74HCT5978-bit shift register with input flip-flopsRev. 3 — 15 April 2014 Product data she ..
74HC6323AD ,Programmable ripple counter with oscillator; 3-stateGENERAL DESCRIPTION1. C is used to determine the dynamic power dissipation (P in μW):PD D2 2The HC/ ..
74HC6323AD ,Programmable ripple counter with oscillator; 3-stateGENERAL DESCRIPTION1. C is used to determine the dynamic power dissipation (P in μW):PD D2 2The HC/ ..
74HC640 ,inverting


74AUP1G79GM-74AUP1G79GW
Low-power D-type flip-flop; positive-edge trigger
1. General description
The 74AUP1G79 provides the single positive-edge triggered D-type flip-flop. Information
on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock
pulse. TheD input must be stable one setup time prior to the LOW-to-HIGH clock
transition for predictable operation.
Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall
times across the entire VCC range from 0.8 V to 3.6 V.
This device ensures a very low static and dynamic power consumption across the entire
VCC range from 0.8 V to 3.6 V.
This device is fully specified for partial power-down applications using IOFF.
The IOFF circuitry disables the output, preventing the damaging backflow current through
the device when it is powered down.
2. Features and benefits
Wide supply voltage range from 0.8 Vto 3.6V High noise immunity Complies with JEDEC standards: JESD8-12 (0.8 Vto 1.3 V) JESD8-11 (0.9 Vto 1.65V) JESD8-7 (1.2 Vto 1.95V) JESD8-5 (1.8 Vto 2.7V) JESD8-B (2.7 Vto 3.6V) ESD protection: HBM JESD22-A114F Class 3A exceeds 5000V MM JESD22-A115-A exceeds 200V CDM JESD22-C101E exceeds 1000V Low static power consumption; ICC = 0.9 A (maximum) Latch-up performance exceeds 100 mA per JESD 78 Class II Inputs accept voltages up to 3.6V Low noise overshoot and undershoot < 10 % of VCC IOFF circuitry provides partial power-down mode operation Multiple package options Specified from 40 Cto+85 C and 40 Cto+125C
74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
Rev. 6 — 28 June 2012 Product data sheet
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
3. Ordering information

4. Marking

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram

Table 1. Ordering information

74AUP1G79GV 40 Cto +125C SC-74A plastic surface-mounted package; 5 leads SOT753
74AUP1G79GW 40 C to +125 C TSSOP5 plastic thin shrink small outline package; 5 leads;
body width 1.25 mm
SOT353-1
74AUP1G79GM 40 C to +125 C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 1 1.45 0.5 mm
SOT886
74AUP1G79GF 40 C to +125 C XSON6 plastic extremely thin small outline package; no leads;
6 terminals; body 11 0.5 mm
SOT891
74AUP1G79GN 40 C to +125C XSON6 extremely thin small outline package; no leads; terminals; body 0.9 1.0 0.35 mm
SOT1115
74AUP1G79GS 40 C to +125C XSON6 extremely thin small outline package; no leads; terminals; body 1.01.0 0.35 mm
SOT1202
74AUP1G79GX 40 C to +125C X2SON5 X2SON5: plastic thermal enhanced extremely thin
small outline package; no leads; 5 terminals;
body 0.8 0.8 0.35 mm
SOT1226
Table 2. Marking

74AUP1G79GV p79
74AUP1G79GW pP
74AUP1G79GM pP
74AUP1G79GF pP
74AUP1G79GN pP
74AUP1G79GS pP
74AUP1G79GX pP
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger

6. Pinning information
6.1 Pinning

NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
6.2 Pin description

7. Functional description

[1] H= HIGH voltage level;= LOW voltage level;
 = LOW-to-HIGH CP transition;= don’t care;= lower case letter indicates the state of referenced input, one setup time prior to the LOW-to-HIGH CP transition.
8. Limiting values

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For TSSOP5 and SC-74A packages: above 87.5 C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 and X2SON5 packages: above 118 C the value of Ptot derates linearly with 7.8 mW/K.
Table 3. Pin description
1 1 data input 2 2 clock pulse input
GND 3 3 ground (0V) 4 4 data output
n.c. - 5 not connected
VCC 5 6 supply voltage
Table 4. Function table[1]
LL HH q
Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
VCC supply voltage 0.5 +4.6 V
IIK input clamping current VI <0V 50 - mA input voltage [1] 0.5 +4.6 V
IOK output clamping current VO <0V 50 - mA output voltage Active mode and Power-down mode [1] 0.5 +4.6 V output current VO =0 Vto VCC - 20 mA
ICC supply current - 50 mA
IGND ground current 50 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation Tamb= 40 C to +125C [2] -250 mW
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
9. Recommended operating conditions

10. Static characteristics

Table 6. Recommended operating conditions

VCC supply voltage 0.8 3.6 V input voltage 0 3.6 V output voltage Active mode 0 VCC V
Power-down mode; VCC =0V 0 3.6 V
Tamb ambient temperature 40 +125 C
t/V input transition rise and fall rate VCC= 0.8 V to 3.6V 0 200 ns/V
Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground=0V).
Tamb = 25 C

VIH HIGH-level input voltage VCC = 0.8 V 0.70  VCC -- V
VCC = 0.9 V to 1.95 V 0.65  VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.30  VCCV
VCC = 0.9 V to 1.95 V - - 0.35  VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = 20 A; VCC = 0.8 V to 3.6 V VCC  0.1 - - V
IO = 1.1 mA; VCC = 1.1 V 0.75  VCC -- V
IO = 1.7 mA; VCC = 1.4 V 1.11 - - V
IO = 1.9 mA; VCC = 1.65 V 1.32 - - V
IO = 2.3 mA; VCC = 2.3 V 2.05 - - V
IO = 3.1 mA; VCC = 2.3 V 1.9 - - V
IO = 2.7 mA; VCC = 3.0 V 2.72 - - V
IO = 4.0 mA; VCC = 3.0 V 2.6 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3  VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.31 V
IO = 1.9 mA; VCC = 1.65 V - - 0.31 V
IO = 2.3 mA; VCC = 2.3 V - - 0.31 V
IO = 3.1 mA; VCC = 2.3 V - - 0.44 V
IO = 2.7 mA; VCC = 3.0 V - - 0.31 V
IO = 4.0 mA; VCC = 3.0 V - - 0.44 V
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.1 A
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.2 A
IOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC=0Vto 0.2 V 0.2 A
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8 V to 3.6 V 0.5 A
ICC additional supply current per pin; VI = VCC  0.6 V; IO = 0A;
VCC =3.3V
[1] -- 40 A input capacitance VCC = 0 V to 3.6 V; VI = GND or VCC -0.8 -pF output capacitance VO = GND; VCC = 0 V - 1.7 - pF
Tamb = 40 C to +85
C
VIH HIGH-level input voltage VCC = 0.8 V 0.70  VCC -- V
VCC = 0.9 V to 1.95 V 0.65  VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.30  VCCV
VCC = 0.9 V to 1.95 V - - 0.35  VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = 20 A; VCC = 0.8 V to 3.6 V VCC  0.1 - - V
IO = 1.1 mA; VCC = 1.1 V 0.7  VCC -- V
IO = 1.7 mA; VCC = 1.4 V 1.03 - - V
IO = 1.9 mA; VCC = 1.65 V 1.30 - - V
IO = 2.3 mA; VCC = 2.3 V 1.97 - - V
IO = 3.1 mA; VCC = 2.3 V 1.85 - - V
IO = 2.7 mA; VCC = 3.0 V 2.67 - - V
IO = 4.0 mA; VCC = 3.0 V 2.55 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.1 V
IO = 1.1 mA; VCC = 1.1 V - - 0.3  VCC V
IO = 1.7 mA; VCC = 1.4 V - - 0.37 V
IO = 1.9 mA; VCC = 1.65 V - - 0.35 V
IO = 2.3 mA; VCC = 2.3 V - - 0.33 V
IO = 3.1 mA; VCC = 2.3 V - - 0.45 V
IO = 2.7 mA; VCC = 3.0 V - - 0.33 V
IO = 4.0 mA; VCC = 3.0 V - - 0.45 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.5 A
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.5 A
IOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC=0Vto 0.2 V 0.6 A
Table 7. Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger

[1] One input at VCC  0.6 V, other input at VCC or GND.
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8 V to 3.6 V 0.9 A
ICC additional supply current per pin; VI = VCC  0.6 V; IO = 0A;
VCC =3.3V
[1] -- 50 A
Tamb = 40 C to +125
C
VIH HIGH-level input voltage VCC = 0.8 V 0.75  VCC -- V
VCC = 0.9 V to 1.95 V 0.70  VCC -- V
VCC = 2.3 V to 2.7 V 1.6 - - V
VCC = 3.0 V to 3.6 V 2.0 - - V
VIL LOW-level input voltage VCC = 0.8 V - - 0.25  VCCV
VCC = 0.9 V to 1.95 V - - 0.30  VCCV
VCC = 2.3 V to 2.7 V - - 0.7 V
VCC = 3.0 V to 3.6 V - - 0.9 V
VOH HIGH-level output voltage VI = VIH or VIL
IO = 20 A; VCC = 0.8 V to 3.6 V VCC  0.11- - V
IO = 1.1 mA; VCC = 1.1 V 0.6  VCC -- V
IO = 1.7 mA; VCC = 1.4 V 0.93 - - V
IO = 1.9 mA; VCC = 1.65 V 1.17 - - V
IO = 2.3 mA; VCC = 2.3 V 1.77 - - V
IO = 3.1 mA; VCC = 2.3 V 1.67 - - V
IO = 2.7 mA; VCC = 3.0 V 2.40 - - V
IO = 4.0 mA; VCC = 3.0 V 2.30 - - V
VOL LOW-level output voltage VI = VIH or VIL
IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.11 V
IO = 1.1 mA; VCC = 1.1 V - - 0.33  VCCV
IO = 1.7 mA; VCC = 1.4 V - - 0.41 V
IO = 1.9 mA; VCC = 1.65 V - - 0.39 V
IO = 2.3 mA; VCC = 2.3 V - - 0.36 V
IO = 3.1 mA; VCC = 2.3 V - - 0.50 V
IO = 2.7 mA; VCC = 3.0 V - - 0.36 V
IO = 4.0 mA; VCC = 3.0 V - - 0.50 V input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.75 A
IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.75 A
IOFF additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC=0Vto 0.2 V 0.75 A
ICC supply current VI = GND or VCC; IO = 0A;
VCC= 0.8 V to 3.6 V 1.4 A
ICC additional supply current per pin; VI = VCC  0.6 V; IO = 0A;
VCC =3.3V
[1] -- 75 A
Table 7. Static characteristics …continued

At recommended operating conditions; voltages are referenced to GND (ground=0V).
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
11. Dynamic characteristics
Table 8. Dynamic characteristics
Voltages are referenced to GND (ground=0 V); for test circuit see Figure 10.
CL = 5 pF

tpd propagation
delay
CP to Q; see Figure8 [2]
VCC = 0.8 V - 19.7 - - - - - ns
VCC = 1.1 V to 1.3 V 2.6 5.5 11.0 2.4 12.9 2.4 14.2 ns
VCC = 1.4 V to 1.6 V 2.0 3.8 7.0 1.8 8.1 1.8 9.0 ns
VCC = 1.65 V to 1.95 V 1.7 3.1 5.4 1.5 6.4 1.5 7.1 ns
VCC = 2.3 V to 2.7 V 1.4 2.3 4.0 1.1 4.7 1.1 5.2 ns
VCC = 3.0 V to 3.6 V 1.2 2.0 3.4 0.9 4.0 0.9 4.4 ns
fmax maximum
frequency
CP; see Figure9
VCC = 0.8 V - 53 - - - - - MHz
VCC = 1.1 V to 1.3 V - 203 - 170 - 170 - MHz
VCC = 1.4 V to 1.6 V - 347 - 310 - 300 - MHz
VCC = 1.65 V to 1.95 V - 435 - 400 - 390 - MHz
VCC = 2.3 V to 2.7 V - 550 - 490 - 480 - MHz
VCC = 3.0 V to 3.6 V - 619 - 550 - 510 - MHz
CL = 10 pF

tpd propagation
delay
CP to Q; see Figure8 [2]
VCC = 0.8 V - 23.1 - - - - - ns
VCC = 1.1 V to 1.3 V 3.1 6.3 12.3 2.8 14.4 2.8 15.9 ns
VCC = 1.4 V to 1.6 V 2.5 4.4 8.1 2.2 9.5 2.2 10.5 ns
VCC = 1.65 V to 1.95 V 2.1 3.6 6.3 1.9 7.5 1.9 8.3 ns
VCC = 2.3 V to 2.7 V 1.8 2.8 4.7 1.5 5.6 1.5 6.2 ns
VCC = 3.0 V to 3.6 V 1.7 2.5 4.1 1.3 4.5 1.3 5.0 ns
fmax maximum
frequency
CP; see Figure9
VCC = 0.8 V - 52 - - - - - MHz
VCC = 1.1 V to 1.3 V - 192 - 150 - 150 - MHz
VCC = 1.4 V to 1.6 V - 324 - 280 - 230 - MHz
VCC = 1.65 V to 1.95 V - 421 - 310 - 250 - MHz
VCC = 2.3 V to 2.7 V - 486 - 370 - 360 - MHz
VCC = 3.0 V to 3.6 V - 550 - 410 - 360 - MHz
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
CL = 15 pF

tpd propagation
delay
CP to Q; see Figure8 [2]
VCC = 0.8 V - 26.6 - - - - - ns
VCC = 1.1 V to 1.3 V 3.5 7.1 13.6 3.2 15.6 3.2 17.2 ns
VCC = 1.4 V to 1.6 V 2.8 5.0 9.2 2.5 10.7 2.5 11.8 ns
VCC = 1.65 V to 1.95 V 2.4 4.1 7.1 2.2 8.5 2.2 9.4 ns
VCC = 2.3 V to 2.7 V 2.2 3.2 5.4 1.9 6.3 1.9 7.0 ns
VCC = 3.0 V to 3.6 V 2.0 2.9 4.5 1.6 5.0 1.6 5.5 ns
fmax maximum
frequency
CP; see Figure9
VCC = 0.8 V - 50 - - - - - MHz
VCC = 1.1 V to 1.3 V - 181 - 120 - 120 - MHz
VCC = 1.4 V to 1.6 V - 301 - 190 - 160 - MHz
VCC = 1.65 V to 1.95 V - 407 - 240 - 190 - MHz
VCC = 2.3 V to 2.7 V - 422 - 300 - 270 - MHz
VCC = 3.0 V to 3.6 V - 481 - 320 - 300 - MHz
CL = 30 pF

tpd propagation
delay
CP to Q; see Figure8 [2]
VCC = 0.8 V - 36.8 - - - - - ns
VCC = 1.1 V to 1.3 V 4.7 9.3 17.3 4.2 23.3 4.2 25.6 ns
VCC = 1.4 V to 1.6 V 3.8 6.4 11.8 3.3 14.3 3.3 15.7 ns
VCC = 1.65 V to 1.95 V 3.3 5.3 9.4 3.0 11.3 3.0 12.4 ns
VCC = 2.3 V to 2.7 V 3.0 4.3 7.0 2.7 8.5 2.7 9.4 ns
VCC = 3.0 V to 3.6 V 2.8 3.9 5.8 2.6 7.2 2.6 7.9 ns
fmax maximum
frequency
CP; see Figure9
VCC = 0.8 V - 28 - - - - - MHz
VCC = 1.1 V to 1.3 V - 128 - 70 - 70 - MHz
VCC = 1.4 V to 1.6 V - 206 - 120 - 110 - MHz
VCC = 1.65 V to 1.95 V - 262 - 150 - 120 - MHz
VCC = 2.3 V to 2.7 V - 269 - 190 - 170 - MHz
VCC = 3.0 V to 3.6 V - 309 - 200 - 190 - MHz
Table 8. Dynamic characteristics …continued

Voltages are referenced to GND (ground=0 V); for test circuit see Figure 10.
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
CL = 5 pF, 10 pF, 15 pF and 30 pF

tsu set-up time HIGH; D to CP;
see Figure9
VCC = 0.8 V - 3.4 - - - - - ns
VCC = 1.1 V to 1.3 V - 0.8 - 1.6 - 1.4 - ns
VCC = 1.4 V to 1.6 V - 0.5 - 1.0 - 1.0 - ns
VCC = 1.65 V to 1.95 V - 0.5 - 0.9 - 0.9 - ns
VCC = 2.3 V to 2.7 V - 0.4 - 0.7 - 0.7 - ns
VCC = 3.0 V to 3.6 V - 0.4 - 0.6 - 0.6 - ns
LOW; D to CP; see Figure9
VCC = 0.8 V - 3.0 - - - - - ns
VCC = 1.1 V to 1.3 V - 0.9 - 1.4 - 1.4 - ns
VCC = 1.4 V to 1.6 V - 0.6 - 1.0 - 1.0 - ns
VCC = 1.65 V to 1.95 V - 0.5 - 0.9 - 0.9 - ns
VCC = 2.3 V to 2.7 V - 0.5 - 0.8 - 0.8 - ns
VCC = 3.0 V to 3.6 V - 0.7 - 1.0 - 1.0 - ns hold time D to CP; see Figure9
VCC = 0.8 V - -1.9 - - - - - ns
VCC = 1.1 V to 1.3 V - -0.6 - 0.2 - 0.2 - ns
VCC = 1.4 V to 1.6 V - -0.4 - 0 - 0 - ns
VCC = 1.65 V to 1.95 V - -0.4 - 0 - 0 - ns
VCC = 2.3 V to 2.7 V - -0.4 - 0 - 0 - ns
VCC = 3.0 V to 3.6 V - -0.3 - 0 - 0 - ns pulse width HIGH or LOW; CP;
see Figure9
VCC = 0.8 V - 5.6 - - - - - ns
VCC = 1.1 V to 1.3 V - 2.4 - 3.5 - 3.5 - ns
VCC = 1.4 V to 1.6 V - 1.3 - 2.0 - 2.0 - ns
VCC = 1.65 V to 1.95 V - 0.9 - 1.9 - 1.9 - ns
VCC = 2.3 V to 2.7 V - 0.7 - 2.0 - 2.0 - ns
VCC = 3.0 V to 3.6 V - 0.6 - 2.2 - 2.2 - ns
Table 8. Dynamic characteristics …continued

Voltages are referenced to GND (ground=0 V); for test circuit see Figure 10.
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger

[1] All typical values are measured at nominal VCC.
[2] tpd is the same as tPLH and tPHL.
[3] CPD is used to determine the dynamic power dissipation (PD in W). =CPD VCC2fi N+ (CL VCC2 fo) where:= input frequency in MHz;= output frequency in MHz;= output load capacitance in pF;
VCC= supply voltage in V;= number of inputs switching;
(CL VCC2fo)= sum of the outputs.
CPD power
dissipation
capacitance
fi = 1 MHz; VI= GND to VCC [3]
VCC = 0.8 V - 1.6 - - - - - pF
VCC = 1.1 V to 1.3 V - 1.7 - - - - - pF
VCC = 1.4 V to 1.6 V - 1.8 - - - - - pF
VCC = 1.65 V to 1.95 V - 1.9 - - - - - pF
VCC = 2.3 V to 2.7 V - 2.3 - - - - - pF
VCC = 3.0 V to 3.6 V - 2.7 - - - - - pF
Table 8. Dynamic characteristics …continued

Voltages are referenced to GND (ground=0 V); for test circuit see Figure 10.
NXP Semiconductors 74AUP1G79
Low-power D-type flip-flop; positive-edge trigger
12. Waveforms

Table 9. Measurement points

0.8 V to 3.6 V 0.5  VCC 0.5  VCC VCC  3.0 ns
ic,good price


TEL:86-533-2716050      FAX:86-533-2716790
   

©2020 IC PHOENIX CO.,LIMITED